DRAKON Visual
Language

Tutorial. Part 1:
How to draw DRAKON flowcharts

Types of DRAKON diagrams

ST Used for the most simple
Primitive < algorithms

: Recommended for all
Silhouette < other algorithms

Primitive

What does a primitive consist of”?

CG reet ing>

"Hello everyone!"

<D

What does a primitive consist of”?

CG reet ing)

! fmmmmm A vertical skewer

"Hello everyone!"

!
<D

What does a primitive consist of”?

CG reeting - The header

"Hello everyone!"

<D

What does a primitive consist of”?

CG reet ing)

"Hello everyone!"

The algorithm

<D

What does a primitive consist of”?

CG reet ing)

"Hello everyone!"

C End) fmmmmm The “End” icon

“Action” icon

CG reet ing)

"Hello everyone!"

<D

== An “Action” icon

“Action” icon

an order to do
something

The skewer must be vertical

Give a daD

Wake up

Work

Go to bed

<D

e Use lines instead of arrows
* Arrows create visual noise

In DRAKON,
the next icon is always below

* |t is not allowed to break the skewer

Live a day even worse

(bave 2 ao) “Insertion” icon

Wake up

Go to work

It is a reference

Work <@g 10 an algorithm
that is defined elsewhere

Go home

Go to bed

(o

Live » 007 “Insertion” icon

Wake up
(:: Work ::)

Meeting

Go to work

Work »

Work on tasks

Go home

Fill report

(o)

Go to bed

(o

“If” icon

Com)

Ask for password

No
<<: Is password correct? ::}

Yes

Create session Show the
"Access denied'" screen

o)

“If” icon

Contains a question
that can be answered
Hyes!! Or “nO”

The happy path goes straight

C Logon > The happy path
B is the most successful
Ask for password and desirable route

No
< Is password correct? >

Yes I

Create session Show the
I "Access denied" screen

<>

The unlucky scenario goes to the right

Com)

Ask for password

No
Is password correct?
Yes

Create session Show the
"Access denied" screen

—

<>

The further to the right,
the worse 1t Is

(:gwkward mov%:>

Make a sudden
turn at the table

Bad

the cup?

Did you drop \\\\ Yes

No

Did the cup \\\\ Yes

break?

Worst

/

No

Good

Pick up the cup
from the floor

Collect
the fragments

Clean the floor

o

Gheck the wheeD VVrOnQ
i

Check the pressure
in the tire

<:: Is the pressure normal?

Yes The happy path

Me IS broken

Pump the tire

Gheck the wheeD

Check the pressure

in the tire

No
<<: Is the pressure normal? :>>—————

Yes

Right

The happy path
Is straight

Pump the tire

(o

Visual noise Is bad
(Eutage investigatioi)

< Was there an outage? \ Yes TOO many angles

No
Did payments \ No

reach the bank?

Yes
Tes < Did the system stop?
No
Assign a low-priority task Manually send payments Wake up the developers!
to the developers They must revive
the system!

End

Horizontal joining

<E%Wage investigati?5>

Yes
<i: Was there an outage? \\\

No

Did payments

Yes

The problem is solved

No

reach the bank? ////

Yes

<:: Did the system stop? ///

No

Assign a low-priority task
to the developers

Manually send payments

Wake up the developers!
They must revive
the system!

Repetition is bad

(::Weekend::>

| o N\ Yes
Is 1t raining?
C >

No

Yes
<<: Is it cold outside? \\\

No

<<: Is the sun shining?

Yes

NN\

Go to the park! Stay home

Stay home

Stay home

(o)

Vertical joining

(Weekend) Removes repetition
<i: e it raining? N\ Yes
s it raining: ///
No
< Is it cold outside? Do
s it cold outside- ///
No
o e s iy
s the sun shining: ///
Yes
Go to the park! Stay home

<>

Line Iintersections
are forbidden

Silhouette

The recommended type of diagrams

What can silhouette do?

* |t can cleanly split the diagram into logical
parts

* |t can represent a finite automaton (state
machine)

* It helps get rid of line intersections in complex
algorithms

What does a silhouette consist of?

Get to the bus Bus trip Get in the office

Walk outside Get on the bus Walk to the office
Lock the door Buy a ticket Enter the building
Walk to the bus stop Find a seat End
Wait for the bus Ride until your stop

Leave the bus

Bus trip {//;et in the office

The header
(Trip to the office)

Get to the bus Bus trip Get in the office

Walk outside Get on the bus Walk to the office
Lock the door Buy a ticket Enter the building
Walk to the bus stop Find a seat End
Wait for the bus Ride until your stop

Leave the bus

Bus trip {//;et in the office

The branches
(Trip to the office)

Get to the bus Get in the office

Walk outside Get on the bus Walk to the office

Lock the door

Buy a ticket Enter the building

Walk to the bus stop

Find a seat

Wait for the bus Ride until your stop

Leave the bus

Get in the office

What does a branch consist of?

Bus tri <= A header with
Ky the branch name

Get on the bus

Buy a ticket

Find a seat

Ride until your stop

Leave the bus

What does a branch consist of?

Qy

Get on the bus

Buy a ticket

The algorithm
of the branch

Find a seat

Ride until your stop

Leave the bus

What does a branch consist of?

Qy

Get on the bus

Buy a ticket

Find a seat

Ride until your stop

Leave the bus

| The address
Fet in the office | of the next branch

Silhouette answers
the three questions of the king:

1. What is the name of the problem??
2. How many parts does the problem have?
3. What are the names of the parts?

1. What is the name of the problem?

Get to the bus Bus trip Get in the office

Walk outside Get on the bus Walk to the office
Lock the door Buy a ticket Enter the building
Walk to the bus stop Find a seat End
Wait for the bus Ride until your stop

Leave the bus

Bus trip {//;et in the office

2. How many problems does the problem have?

<:jrip to the offic§:>

Get to the bus

Get in the office

Walk outside Get on the bus Walk to the office

Lock the door

Buy a ticket Enter the building

Find a seat

Walk to the bus stop

Wait for the bus Ride until your stop

Leave the bus

Get in the office

3. What are the names of the parts?

<:jrip to the offic§:>

Get to the bus Bus trip Get in the office

Walk outside Get on the bus Walk to the office
Lock the door Buy a ticket Enter the building
Walk to the bus stop Find a seat End
Wait for the bus Ride until your stop

Leave the bus

(//////;;;/;:;;\\\\\\W [//;et in the office

The leftmost branch is run first

<:jrip to e offic§:>

Bus trip

Walk out Get on the bus

Get in the office

Walk to the office

Lock the

or Buy a ticket

Enter the building

Walk to Find a seat

Ride until your stop

Leave the bus

{//;et in the office

End

Then follow the other branches

Get to the bus

Walk outside Get on th

Lock the door Buy a tic

Walk to the bus stop Find a se

Wait for the bus Ride unti

‘ Bus trip | {//;et in the office

Get in the office

Walk to the office

Enter the building

End

The rightmost branch goes last

<:jrip to the offic§:>

Walk outside Get on the bus

Lock the door Buy a ticket

Walk to the bus stop Find a seat

Wait for the bus Ride until your stop
Leave the bus

{/”/’//;;g/::;;\\\\\\w {//;et in the office

There can be only one
"End” icon

on the DRAKON diagram

The order of branches is defined in the “Address” icons

(:?ranches:

the ordeE:>

5

I

P

L

L

[@s)j(esijien]jie]

(o)

The branches should by sorted left-to-right

(:%ranches: the order :

A B C D L\\\\;ll;////J

«>

When is it allowed to go to the left?

1. When some branches need to be repeated.

2. When the diagram represents a finite
automaton (state machine).

A branch can have several “Address” icons

The algorithm of such branch
decides which branch to run next

(Branches)
A

[

v L

_

Yes

End

No

I

L/

lcon “Select”

Contains a question:
» that cannot be answered “yes” or "no’
« that can have several answers

lcon “Select”

(:%night at a crossroa%:>
/ Where to go? /

To the left Straight ahead To the right
You will You will Llose You will Llose
find nothing your horse your life

<D

How to arrange the answers?

 Following the principle “The further to the right, the
worse it is”

or

 Following the principle “The further to the right, the
larger it is”

or

 Following the principle “The further to the right, the
higher it is”

Or...

The key thing is to sort the answers

The further to the right, the larger it is
(o)

How much vodka
did you drink?

None 0.1 - 0.5 liter 0.6 — 1.0 liter More

Drive home safely Call the taxi Fall on the floor Call the ambulance

(o

Loops

Lift the weight while not tired

(:‘Workout::>
B |

Lift the weight

| N\ No
Tired?
<)
Yes

<>

The body of this loop
IS run at least once

(:‘Workout::>
B |

Lift the weight

| N\ No
Tired?
<)
Yes

<>

<>

-

< Hungry?

No

Yes

Eat a hamburger

<D

Hungry?

If yes, then
eat a hamburger
start from the
beginning

If no, then leave

This loop is skipped if the condition is not met

(:: Lunch ::)
-
Yes
< Hungry?

No

Eat a hamburger

<D

The loop condition is inside the loop body

(:%ead a file line by lin%:>

-

Read a line

No
<<: End of file reached? :>>———

Yes

Add the line
to the list

<D

“For each” loop

(:?irthday part{:>

7 N

For each cake

Take a bite

Next cake

<D

There can be several exits from a loop

(:?easonable birthda¥:>

/

For each cake

Take a bite
No
Still hungry?
Yes

[e coe
«»

Interesting reading
Yes

For each page Jump to page 810

Read the page

Silhouette loop: some branches are run several times

(:%egin a work da¥:>

Talk to collegues Eat something Prepare for work

Discuss weather Eat a hamburger Take a nap
. . N\ No
Discuss sports Still hungry?
Yes End
Discuss movies
The Address icon below points

at the same branch
and forms a loop.

Eat something Eat something Prepare for work

Silhouette loop: some branches are run several times

Loop branches are marked
<Begin a work day) with black triangIeS

Talk to collegues

Eat something

Prepare for work

fi

Discuss weather Eat a hamburger Take a nap
. | . N\ No
Discuss sports Still hungry?
Yes End
Discuss movies
The Address icon below points

at the same branch
and forms a loop.

Eat something Eat something (/;;;;;;;/;;;\;;;;\W

ks

“Select” loop

(::Fishing::>
—

Cast the rod

What have
you caught?

A big fish A small fish Nothing

Call your friends

Go home

o)

e)

Stepan Mitkin
stipan.mitkin@gmail.com

The diagrams on the slides were made with
DRAKON Editor

http://drakon-editor.sourceforge.net/

June 2013

mailto:stipan.mitkin@gmail.com
http://drakon-editor.sourceforge.net/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

